Effects of Inhibitors of Protein Serine/Threonine Phosphatases on Pollination in Brassica.
نویسندگان
چکیده
We have examined the effect of the protein phosphatase inhibitors okadaic acid and microcystin on pollen-pistil interactions in Brassica. Inhibitor-treated flowers or floral buds were pollinated with untreated pollen and examined for pollen tube growth by fluorescence microscopy. Our results show that type 1 or type 2A serine/threonine phosphatases play a crucial role in the pollination responses of Brassica. We observed two distinct effects of protein phosphatase inhibitors on pollination: (a) the inhibition of pollen tube growth during cross-pollination in flowers, and (b) the break-down of self-incompatibility or promotion of pollen tube growth during self-pollination in flower buds just prior to anthesis. Thus, treatment of flower pistils with protein phosphatase inhibitors resulted in the inhibition of pollen tube growth at the surface of the papillar cells of the stigma in crosses between different self-incompatible Brassica oleracea strains, in an interspecific cross between B. oleracea and Brassica campestris, and in self-pollinations of a self-fertile Brassica napus cultivar. With four different self-incompatibility genotypes, treatment of mature flowers with protein phosphatase inhibitors had no effect on self-pollination response. In contrast, treatment of flower buds just prior to the anthesis stage allowed self-pollen tube invasion of papillar cells. However, the magnitude of this effect was genotype dependent, being most pronounced in the S22 genotype. The data support the conclusion that pollinations in Brassica are controlled in part by the presence of phosphorylated proteins in the papillar cells of the stigma, and that the quantity of these proteins or their levels of phosphorylation changes during stigma development.
منابع مشابه
Theoretical Thermodynamic Study of Solvent Effects on Serine and Threonine Amino Acids at Different Temperatures
The thermodynamic functions such as enthalpy (H), Gibbs free energy (G) and entropy (S) of Serineand Threonine amino acids were theoretically studied at different condition (solvents andtemperatures) by using Gussian o3, software. First, the structural optimization of isolated Serine andThreonine were done in the gas phase by using the Hartree-Fock (HF) level of theory with 3-21G, 6-31G and 6-3...
متن کاملEffects of serine/threonine protein phosphatases on ion channels in excitable membranes.
This review deals with the influence of serine/threonine-specific protein phosphatases on the function of ion channels in the plasma membrane of excitable tissues. Particular focus is given to developments of the past decade. Most of the electrophysiological experiments have been performed with protein phosphatase inhibitors. Therefore, a synopsis is required incorporating issues from biochemis...
متن کاملInhibitors of serine/threonine protein phosphatases antagonize the antinociception induced by agonists of alpha 2 adrenoceptors and GABAB but not kappa-opioid receptors in the tail flick test in mice.
We previously reported that serine/threonine protein phosphatases (PPs) play a role in the antinociception induced by the mu-opioid receptor agonist morphine. In this study we evaluated the possible involvement of PPs on the antinociception induced by agonists of others G protein-coupled receptors in the tail flick test in mice. The subcutaneous administration of clonidine (0.25-4 mg/kg), baclo...
متن کاملEffects of serine/threonine protein phosphatase inhibitors on morphine-induced antinociception in the tail flick test in mice.
The aim of this study was to evaluate the effects of serine/threonine protein phosphatase (PP) inhibitors on morphine-induced antinociception in the tail flick test in mice, and on [3H]naloxone binding to the forebrain crude synaptosome fraction. Neither okadaic acid nor cantharidin (1-10000 nM) displaced [3H]naloxone from its specific binding sites, which indicates that they do not interact at...
متن کاملA plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L., encodes a functional serine/threonine kinase.
To investigate the catalytic properties of the Brassica oleracea S-locus receptor kinase (SRK), we have expressed the domain that is homologous to protein kinases as a fusion protein in Escherichia coli. Following in vivo labeling of cultures with 32P-labeled inorganic phosphate, we observed phosphorylation of the fusion protein on serine and threonine, but not on tyrosine. In contrast, labelin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 103 4 شماره
صفحات -
تاریخ انتشار 1993